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BAYESIAN DECONVOLUTION 
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ABSTRACT 

Bayesian probability has been applied to the problem of estimating the true 
spectral lineshape from an experimental peak with prior knowledge of the 
instrumental contribution. The results demonstrate that Baye- 
sian deconvolution provides excellent estimates of the parameters defining the 
true spectral lineshape even from strongly overlapping or broadened peaks in 
the presence of significant noise levels. 

INTRODUCTION 

Signal recovery, namely deconvolution, spans several disciplines of ex- 
perimental science. In all experiments where a signal is measured, the measur- 
ing instrument also adds something to the true signal causing a broadened 
signal. Elimination of that ”something extra’’ is the art of deconvolution. 

observed measurement is 
The desired signal is representable as a function D(o) and the convolved 
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or 

C = T @ D  

MODE AND WHITTENBURG 

where T is that "something extra" from the instrument. The recovery of D(o) 
fiom C(o) assuming T(oo-o) is known, is the process of deconvolution. In 
the time domain convolution is represented by 

C(t )  = T(t)*D(t)  

Several deconvolution techniques have been developed, the most utilized 
of which are the Van Cittertl and modifications to the Van Cittert2.3, and 
more recently Fourier self deconv~lution~. Fneden5 discusses many 
techniques in an extensive review of deconvolution. These techniques, while 
successhl at deconvolution, do not yield directly the parameters of the model 
functions that describe the signal. Bayesian deconvolution is not only 
successfiil at deconvolving the signal, but also can directly yield values for the 
parameters that describe the deconvolved signal. The techniques also 
directly tells us about the accuracy of our estimated parameters. Bayesian de- 
convolution uses a mathematical probability theorem. The technique is based 
on recovering the most probable parameters of a model finction that repre- 
sents the data, given a set of data. Besides recovering the parameters, 
another advantage is that for a Lorentzian model function the amplitudes can 
be estimated as a fitting parameter, thereby decreasing valuable computational 
time. 

THEORETICAL SECTION 

Given a set of data 

where di is the data value at time ti, and ei is the noise at tha time, then we 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
3
:
5
0
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



BAYESIAN DECONVOLUTION 1087 

can describe the time-domain signal by a function f(t) in the absence of noise, 

f (t) = r* Bcos(wt) exp[-Xt ] 4 B sin( w') exp[ - n f t ]  ( 5 )  

which corresponds to two model functions. This model describes the general 
case of decaying sinusoid signals. In the fiequency-domain, simple exponential 
decay corresponds to Lorentzian lineshapes. Gaussian lheshapes can 
be modeled with time-domain model fbnctions with Gaussian decay. Data 
with a mixed LorentdadGaussian frequency spectrum can be described 
by four model functions; two with simple exponential decay as in eq. 4 and 
two with Gaussian decay. But, our final model functions must reflect convo- 
lution, so we convolve the model functions with our chosen instrumental 
function. To describe the time-domain data we must compute the probabilities 
for 2*n+l parameters (corresponding to 4 a, and r) in the data, where n is 
the number of Frequencies in the fiequency spectrum of the time-domain data. 
We proceed to evalute these parameters usins Bayes' Theorem, 

and 

which is based on the fact that Aristotelian logic is commutative; so H and D 
are interchangeable. Our hypothesis H consists of the parameters of our 
model function, yielding 
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1088 RHODE AND WHITTENBURG 

which says that the probability that the parameters are correct given the data, 
D and any prior information, I is equal to the product of the prior probability 
P(B, a, r/r) and the direct probability of the data divided by the normalization 
probability of the data given only the prior information, P@/I). Since 
we have no prior information about the values of the parameters, we can as- 
sume a uniform prior probability. Furthermore, we are not interested in a 
normalized probability so we will ignore the marginal probability. Finally, we 
will treat the amplitudes a nuisance parameters and integrate them out of the 
probability. The amplitudes will be back-calculated from the final results. Thus 
we wish to evaluate 

The probability that one of several mutually exclusive propositions is true, is 
the sum of their separate probabilities (sum rule of probability theory). We can 
solve the equation for the direct probability by first constructing the probabil- 
ity of the noise. The most conservative noise probability (least informative) 
is the result of maximum entropy, 

for N points in the data and where cr is the noise variance. Solving for ei in eq. 
4 and substituting into eq. 10 yields the direct probability 

where 
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BAYESIAN DECONVOLUTION 

where 

and 

N 

&k = C Gj(ti)Gk(ti) 
i=l 

and where Gj and + are the model hnctions given in eq. 5. That is, Gl(t) = 

r cos(ot) exp(-Tm) and G2(t)=rsin(wt)exp(-rm). Eq. 14 can be solved by 
converting to orthonormal coordinates. We obtain the eigenvectors, ejk, and 
the eigenvalues, hj, of gjk. The orthonormal functions are then 
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In terms of the orthonormal functions, the model fhnctions are 

where the amplitudes are 

and 
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1090 RHODE AND WHIITENBURG 

Integrating over the amplitudes and integrating over the noise variance yields 

where 

and 

The probability that a resonance with frequency w is in the data D given by eq. 
19 is called the Student t-distribution. The maximun in the probability occurs 
at values of w and I7 that maximize the sufficient statistic, h2 The sufficient 
statistic is less sharply peaked than P(w,T/D) and is, therefore, more amenable 
to digital optimization methods. The sufficient statistic is determined by pro- 
jecting the model functions, Hj(ti), onto the data, dj. In this work, a 
Lorentzian model function represents the data 

where A is the amplitude, r is the full width at half height and wo is the fie- 
quency at maximum amplitude. The index i runs over the number of 
Lorentzians, N, in the data. This hnction can also be described in the time 
domain as 
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BAYESIAN DECONVOLUTION 1091 

The instrumental function can also be described by a Lorentzian lineshape, but 
centered at zero ( wo =O.O). The model function is convolved with an instru- 
mental function in the time domain and Bayesian deconvolution is applied to 
recover the true signal from the data along with the parameters A, r, and a. 

Procedure 

All of the computer programs required for conmputation are written in the 
C prosamming language on a Sun Sparcstation I+. A pure Lorentzian line- 
shape is chosen to represent data in the fiequency and time domains using eqs. 

22 and 23, respectively. This generated data describes the sought- 
after deconvolved signal, D(w) in eq. 1. Generation in both domains is done to 
compare the Bayesian output data to original frequency domain data. All of 
the actual Bayesian deconvoiution computations are done on the time domain 
data. Many modern instruments are FT instruments, that is, the data is ac- 
quired in the time domain and the instrument transforms the data 
to the frequency domain for the user. Ultimately, one would perform 
the inverse fast Fourier transform on frequency domain data acquired from an 
instrument, then do Bayesian deconvolution. The generated data sets consisst 
of 1024 points. An instrumental hnction is also generated using a Lorentzian 
lineshape but with unit amplitude and with zero resonance frequency. 

In order to represent convolved data from an instrument, each data set is 
convolved with the instrumental hnction. When convolving in the time do- 
main, we simply multiply the Lorentzian fbnction by the instrumental hnction 
point by point. Convolution in frequency or transform space is a little more te- 
dious, requiring computing the sums of the products of the instrumen- 
tal hnction with the Lorentzian as the instrumental hnction is swept over the 
Lorentzian function. This is represented mathematically by eq. 1. The effect of 
convolution of a peak with an instrumental contribution is a much broader and 
flatter spectrum. 
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1092 RHODE AND WHIITENBURG 

In proceeding to apply Bayesian deconvolution, the convolved data set is 
read from a disk. Initial guesses for the parameters of frequency and linewidth 
are determined. We choose an initial linewidth of 2.0 and the frequency para- 
meters are systematically chosen by examining the fiequency domain data. A 
moving average of the intensities over 23 points is used to determine possi- 
ble resonance frequencies. Model fbnctions representing eq. 5 are set up using 
our guesses for the parameters. These model functions are then convolved 
with an instrumental function in order to represent 9 and & in eq. 14. 

We then proceed to maximize the sufficient statistic for our model hnctions 
by using conjugate gradient optimization of the parameters. Each time that 
the parameters are iterated, the model finctions are again convolved with 
the instrumental function. Another peak is then added now giving us two 
more parameters to optimize. The new resonance frequency is chosen 5 fie- 
quency units away from the previous and the linewidth is chosen to be the 
same as the previous. Again the parameters for our new model functions are 
optimized using conjugate gradient optimization and a sufficient statistic 
is obtained. This sufficient statistic is compared to the previous one. The ad- 
dition of another Lorentian is repeated until the new sufficient statistic is no 
longer greater than the previous one. The parameters for the model functions 
that yield the maximum sufficient statistic represents the deconvolved signal. 

RESULTS AND DISCUSSION 

We have appplied Bayesian deconvolution initially to a simple data set 
where the peaks are well-separated. In order to provide a difficult test for the 
Bayesian deconvolution method, we have also chosen to study two close 
peaks with a sufficiently broad instrumental contribution so as to cause severe 
overlap. The parameters for the synthetic data sets are given in Table 1 
and Table 2. The instrumental linewidth was 4.0. Various peak to peak noise 
levels were added to the data using a random number generator as indicated in 
Table 3. 

Again, the true signal is convolved with the instrumental function to repre- 
sent a convolved data set that would be obtained from an instrument. Bayes- 
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Parameter 
Amplitude 
Linewidth 

TABLE 1 
Parameters Used to Generate Two Well-separated Lorentzians 

Peakl Peak2 
100.00 50.00 

4.00 6.00 
Frequency 45.00 

TABLE 2 
Parameters Used to Generate Two Overlapping Lorentzians 

55.00 

Param ete r 

Line w id t h 
Frequency 

Amplitude 

TABLE 3 

Results of Parameters at Different Noise Levels, N, for Two Well-seperated 
Peaks. The Instrumental Linewidth is 4.0. The True Values are in Table 1 .  

Peakl Peak2 
100.00 50.00 

4.00 6.00 
47.00 55.00 

Parameter N=O.O N=l .O N=4.0 N=8.0 
Amplitude 

Peakl 100.02 100.72 102.55 104.23 
Error (%) 0.02 0.72 2.55 4.23 
Peak2 50.03 49.09 46.4 43.35 
Error (%) 0.06 1.82 7.2 13.3 

Linewidth 
Peak? 4.00 4.02 4.08 4.1 5 

Peak2 6.00 6.02 6.08 6.19 
Error (%) 0.00 0.33 1.33 3.17 

Error (%) 0.00 0.50 2.00 3.75 

Frequency 
Peakl 45.00 45.00 44.99 44.97 
Error (%) 0.00 0.00 0.02 0.07 
Peak2 55.00 54.93 54.69 54.36 
Error (%) 0.00 0.13 0.56 1.16 
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1094 RHODE AND WHITTENBURG 

Parameter I N=O.O N=l .o 
Amplitude Peakl 99.08 109.47 

Peak2 50.08 52.64 
0.16 0.68 

Linewidth Peakl 3.99 4.14 
Error (%) 0.25 3.50 
Peak2 6.08 4.68 
Error (%) 1.33 17 .OO 

Frequency Peakl 46.99 47.06 
Error (%) 0.02 0.13 
Peak2 53.05 51.60 
Error (%) 0.09 2.64 

Error (%) 0.92 9.47 

TABLE 4 

Results of Parameters at Different Noise Levels, N, for Two Overlapping 
Lorentzians. The Instrumental Linewidth is 4.0. The True Values are in 

Table 2.  

ian deconvolution is applied and the resulting parameters describe the decon- 
volved lineshape. 

Table 3 gives the results corresponding to the data set where the peaks are 
well-separated at four different noise levels of 0.0, 1 .O, 4.0 and 8.0. Table 4 
gives the results for two peaks that are close to one another corresponding to 
noise levels of 0.0 and 1 .O. Sample spectra are shown in Figures 1 and 2. 

Several limitations of the method are apparent in the results given in these 
Tables. When the signal-to-noise ratio of the data is very high, Bayesian de- 
convolution does a remarkable job of extracting the true signal from the con- 
volved spectrum even when the peaks are unresolved. The source of the 
broadening can be due to either the overlap of the unconvolved peaks, the 
linewidth of the instrumental contribution, or a combination of these two 
effects. Because the linewidth information of the instrumental contribution is 
contained in the data file containing the experimentally measured or generated 
instrumental fbnction the Bayesian algorithm can still regenerate a good 
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" 
0 20 40 60 ao too 

Frequency 

FIG. 1. Two well-resolved peaks with n o i s ~ 4 . 0  and linewidth=4.0. (A) 
represents the Bayesian generated result ( - ) overlapping the true signal (x) 
(B) represents the convolved data. 
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1096 RHODE AND WHIlTENBURG 

100 

- - 
- - 
- 
i 0 

FIG. 2. Two overlapping peaks with noise=O.O and linewidth=4.0. (A) 
represents the Bayesian generated result ( - ) overlapping the true signal (x). 
@) represents the convolved data. 
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approximation to the unconvolved spectra as long as the convolved peaks 
are reasonably resolved. The Bayesian approach can deconvolve peaks in 
which one of the bands appears as a "shoulder", however, as the noise is 
increased, the uncertainty in the linewidth, and the resulting estimate of the 
amplitude, increases rapidly. 

Brillouin Data 

In Brillouin scattering a light wave has its frequency shifted by an amount 
equal to the frequency of a sound wave. Since energy must be conserved, the 
frequency of the incident photon is equal to the frequency of the scattered 
photon plus the frequency of the sound wave. The Brillouin spectrum consists 
of a central Rayleigh peak, usually centered at the incident laser frequency and 
a pair of shifted peaks, called the brillouin doublet. A Lorentzian lineshape 
best describes the peaks. 

Bayesian deconvolution is applied to a Brillouin spectrum of formamide 
(300OC). Van Cittert deconvolutionis also applied to the data and the results 
are compared to the Bayesian deconvolution. 

The formamide data contains 5 12 data points. The signal is represented as 
a hnction of frequency; therefore, in order to apply Bayesian deconvolution, 
the data must be inverse Fourier transformed into the time-domain. The sig- 
nal-to-noise ratio of the data set is approximately 19: 1 for the two side bands 
and 40: 1 for the central peak. The spectrum is shown in Figure 3. 

Brillouin spectrum of a fitted glass cell (so that the incident light is totally 
reflected). Instead of actually using the experimentally obtained instrumental 
spectrum, the linewidth (FWHM) of the spectrum is physically measured and 
used to generate an instrumental function. The instrumental linewidth is 8.0. 

The parameters that represent the deconvolved iineshape obtained from 
Bayesian deconvolution are given in Table 5. The spectrum generated from 
these parameters is shown graphically in Figure 4. The model function 
(converted to the original coordinate system) that maximizes the sufficient 
statistic including convolution is shown in Figure 3.  

An instrumental spectrum is also experimentally obtained by measuring the 
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Linewidth 
Frequency 

RHODE AND WHITTENBURG 

23.12 10.22 18.69 
131.29 242.55 353.6 

12000 

10000 

8000 

6000 

4000 

2000 

0 
0 100 200 300 400 500 

Arbitrary Frequency Units 

FIG. 3. Brillouin spectrum of formamide. 

TABLE 5 
Results of Bayesian Deconvolution of the Brillouin Spectrum of Formamide 

Parameter I Peak1 I Peak2 I Peak3 
Amplitude 51 16.661 11962.031 4471.91 
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12500 
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al 
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12500 

c 

t- 

I 10000 
A 

7500 

5000 

2500 

0 
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FIG. 4. Bayesian deconvolution of experimental Brillouin spectrum. (A) 
represents the Bayesian deconvolved spectrum. (B) represents the original 
data ( - ) and the Bayesian result convolved with the instrumental fbnction 

(x). 
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1100 MODE AND WHIlTENBURG 

The Van Cittert method of deconvolution can be represented by 

assuming DI=C, where Dn is the deconvolved signal, Dn-1 is the result of the 
previous iteration, C is the observed convolved data, and T is the instrumental 
function. First the observed signal is convolved with the instrumental hnction, 
subtracted from the observed signal and then used as the estimator for the 
next iteration. This process is continued until a convegence criterion is 
met. Convergence can be forced by multiplying by a mixing coefficient, a, 
yielding 

When applying the Van Cittert, three different values of the mixing coeffi- 
cient, a, are chosen to examine how the choice effects the deconvolved 
result. These values of a are 0.05, 0.005, and 0.0005. The deconvolved spec- 
trum demonstrating the best compromise between noise and linewidth is ob- 
tained at ~ ~ 0 . 0 0 5 .  The resulting spectrum is also shown in Figure 4. 

Since there is no way of knowing what our final result should be, we 
cannot calculate any errors in the parameters obtained. But since we do have 
confidence in the Bayesian deconvolution results of generated data with com- 
parable signal-to-noise ratios, we can speculate that the Bayesian results are 
very good. Furthermore, after observing the spectrum of the model function 
that maximizes the sufficient statistic (Figure 3) and comparing it to the data, 
we can draw the conclusion that our final deconvolved spectrum is a good 
estimate. 

Upon applying Van Cittert deconvolution to the Brillouin data, the algo- 
rithm does not converge, but is terminated after 300 iterations. Furthermore 
the results vary with different values of the initial mixing coefficient. These 
discrepancies can probably be attributed to the noise in the data, since we 
experience similar problems with the generated data sets that contain noise, 
but not with the noise-free data sets. Noise has been demonstrated by Blass 
and Halsey6 to be one cause of Van Cittert not to converge. They determined 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
3
:
5
0
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



BAYESIAN DECONVOLUTION 1101 

the "reasonable minimum requirement for deconvolvable data (by modified 
Van Cittert) to be a signal-to-noise ratio of 50:l or greater". 

CONCLUSION 

Bayesian deconvolution provides a method for deconvolution of an 
instrumental function from a convolved spectrum while directly yielding 
deconvolved parameters such as peak height, linewidth, and area. The method 
is superior to the conventional Van Cittert approach, particularly at lower 
signal-to-noise ratios. The technique also handles peaks that are strongly- 
overlapping. 

or generated by estimating the linewidth. For spectroscopic methods for 
which the instrumental h c t i o n  can be experimentally measured, i.e. Brillouin 
or Raman Spectroscopy, the instrumental spectra can be stored into a data file 
and used directly in the convolution step of the algorithm. For spectroscopic 
methods in which this is not possible and approximate instrumental function 
may be generated and stored in a file. It is not necessary that the instrumental 
hnction be a simple Lorentzian or Gaussian lineshape. 

Bayesian deconvolution is also superior to the Van Cittert in the case of 
deconvolving a real Brillouin data set. The modifled Van Cittert leaves doubt 
as to the choice of the best value for the mixing coefficient. Furthermore, the 
best deconvolved spectrum has added moise from the deconvolution process, 
which will only increase the dficulty of obtaining the parameters from a 
fitting routine. 

We have recently applied Bayesian analysis to multi-dimensional NMR. 
Several of the unique features of Bayesian analysis make it an ideal technique 
for multidimensional analysis. In future work we will apply Bayesian 
probability to multi-dimensional deconvolution. Bayesian deconvolution can 
also be applied to  other lineshapes including Gaussian or mixed 
Gaussidorentzian peaks. This approach will make Bayesian deconvolution 
especially valuable in other areas of spectroscopy such a FT-IR and 
Raman spectroscopy, and possibly, even in the field of chromatography. 

The instrumental signal can either be measured experimentally, 
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