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ABSTRACT

Bayesian probability has been applied to the problem of estimating the true
spectral lineshape from an experimental peak with prior knowledge of the
instrumental contribution. The results demonstrate that Baye-
sian deconvolution provides excellent estimates of the parameters defining the
true spectral lineshape even from strongly overlapping or broadened peaks in
the presence of significant noise levels.

INTRODUCTION

Signal recovery, namely deconvolution, spans several disciplines of ex-
perimental science. In all experiments where a signal is measured, the measur-
ing instrument also adds something to the true signal causing a broadened
signal. Elimination of that "something extra" is the art of deconvolution.

The desired signal is representable as a function D(o) and the convolved
observed measurement is

Clw)= j T(a - &) D(w)do 1)
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or
C=T®D o))

where T is that "something extra" from the instrument. The recovery of D(w)
from C{®) assuming T(@q-0) is known, is the process of deconvolution. In
the time domain convolution is represented by

C(0)=T(t)*D(1) 3)

Several deconvolution techniques have been developed, the most utilized
of which are the Van Cittert! and modifications to the Van Cittert23, and
more recently Fourier self deconvolution®. Frieden> discusses many
techniques in an extensive review of deconvolution. These techniques, while
successful at deconvolution, do not yield directly the parameters of the model
functions that describe the signal. Bayesian deconvolution is not only
successful at deconvolving the signal, but also can directly yield values for the
parameters that describe the deconvolved signal. The techniques also
directly tells us about the accuracy of our estimated parameters. Bayesian de-
convolution uses a mathematical probability theorem. The technique is based
on recovering the most probable parameters of a model function that repre-
sents the data, givena set of data. Besides recovering the parameters,
another advantage is that for a Lorentzian model function the amplitudes can
be estimated as a fitting parameter, thereby decreasing valuable computational
time.

THEORETICAL SECTION

Given a set of data
di=f(t)+e )

where d; is the data value at time t;, and e; is the noise at tha time, then we
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can describe the time-domain signal by a function f(t) in the absence of noise,
f(t)=T*Bcos(axt)exp{—alt]+ Bsin(ax) exp[—2lt] )

which corresponds to two model functions. This model describes the general
case of decaying sinusoid signals. In the frequency-domain, simple exponential
decay corresponds to Lorentzian lineshapes. Gaussian lineshapes can

be modeled with time-domain model functions with Gaussian decay. Data
with a mixed Lorentzian/Gaussian frequency spectrum can be described

by four mode! functions; two with simple exponential decay as in eq. 4 and
two with Gaussian decay. But, our final model functions must reflect convo-
lution, so we convolve the model functions with our chosen instrumental
function. To describe the time-domain data we must compute the probabilities
for 2*n+1 parameters (corresponding to A, @, and I') in the data, where nis
the number of frequencies in the frequency spectrum of the time-domain data.
We proceed to evalute these parameters using Bayes' Theorem,

P(H,D|I) = P(D|nP(H|D,1)= PCHIDP(DIH, ) (6)
and
P(H|IDP(DIH,
PHD.D == lQ(l)(ml : g

which is based on the fact that Aristotelian logic is commutative; so H and D
are interchangeable. Our hypothesis H consists of the parameters of our
model function, yielding

P(B,w,T|D,I) = P(B"‘”fIQ(PD(‘lI))IB,w,r,I)

®
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which says that the probability that the parameters are correct given the data,
D and any prior information, I is equal to the product of the prior probability
P(B, o, I'/T) and the direct probability of the data divided by the normalization
probability of the data given only the prior information, P(D/T). Since

we have no prior information about the values of the parameters, we can as-
sume a uniform prior probability. Furthermore, we are not interested in a
normalized probability so we will ignore the marginal probability. Finally, we
will treat the amplitudes a nuisance parameters and integrate them out of the
probability. The amplitudes will be back-calculated from the final results. Thus
we wish to evaluate

P(o,T|D) = [ P(D|B,0,T)dB ©)

The probability that one of several mutually exclusive propositions is true, is
the sum of their separate probabilities (sum rule of probability theory). We can
solve the equation for the direct probability by first constructing the probabil-
ity of the noise. The most conservative noise probability (least informative)

is the result of maximum entropy,

P(ejo) = 2nd?)™"? exp[JZje(t.-)2 /26%] (10)

for N points in the data and where ¢ is the noise variance. Solving for ¢; in eq.
4 and substituting into eq. 10 yields the direct probability

P(w'D) = [@20*)™""* expl~NQ | 26°1dB an

where

0=F (L)Y 3 BAGH) + DT gBB (12)

i=l j=1 j=1 k=1
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where

3= (—}pgd%m (13)
and

ge = 3. Gi#)Gr(t) (14)

and where Gj and Gy are the model functions given in eq. 5. That is, G1(t) =
T cos(ot) exp(-I'rnt) and Go(t)=Tsin(wt)exp(-I'nt). Eq. 14 can be solved by
converting to orthonormal coordinates. We obtain the eigenvectors, €jk, and
the eigenvalues, kj, of gik- The orthonormal functions are then

Hity= 23 e, Ge(t) (15)
k=1

In terms of the orthonormal functions, the model functions are
FO =T AHQ (16)
where the amplitudes are
4 =53 Bey a7
~
and

B, = Aiex ! X)"? (18)
i
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Integrating over the amplitudes and integrating over the noise variance yields

P(&,T|D) c (1~ 7’:/’%’;_—)('"-”)’2 (19)
where
B =m'Sh (20)
-
and
N
h; =§d,.Hj(t,,) (21)

The probability that a resonance with frequency  is in the data D given by eq.
19 is called the Student t-distribution. The maximun in the probability occurs
at values of © and T that maximize the sufficient statistic, hZ The sufficient
statistic is less sharply peaked than P(w,I'/D) and is, therefore, more amenable
to digital optimization methods. The sufficient statistic is determined by pro-
jecting the model functions, Hj(ti), onto the data, dj. In this work, a
Lorentzian model function represents the data

L(w)= i_A{z__ 22)

Py I—~._2 +4(w- (a»-)z

where A is the amplitude, T is the full width at half height and o is the fre-
quency at maximum amplitude. The index i runs over the number of
Lorentzians, N, in the data. This function can also be described in the time
domain as
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I(t) = ZN;[sin(z mant) + cos(2 mant)JT exp(—7Lt) (23)

i=1

The instrumental function can also be described by a Lorentzian lineshape, but
centered at zero ( @y =0.0). The model function is convolved with an instru-
mental function in the time domain and Bayesian deconvolution is applied to
recover the true signal from the data along with the parameters A, I', and ©.

Procedure

All of the computer programs required for conmputation are written in the
C programming language on a Sun Sparcstation 1+. A pure Lorentzian line-
shape is chosen to represent data in the frequency and time domains using eqs.
22 and 23, respectively. This generated data describes the sought-
after deconvolved signal, D(@) in eq. 1. Generation in both domains is done to
compare the Bayesian output data to original frequency domain data. All of
the actual Bayesian deconvolution computations are done on the time domain
data. Many modemn instruments are FT instruments, that is, the data is ac-
quired in the time domain and the instrument transforms the data
to the frequency domain for the user. Ultimately, one would perform
the inverse fast Fourier transform on frequency domain data acquired from an
instrument, then do Bayesian deconvolution. The generated data sets consisst
of 1024 points. An instrumental function is also generated using a Lorentzian
lineshape but with unit amplitude and with zero resonance frequency.

In order to represent convolved data from an instrument, each data set is
convolved with the instrumental function. When convolving in the time do-
main, we simply multiply the Lorentzian function by the instrumental function
point by point. Convolution in frequency or transform space is a little more te-
dious, requiring computing the sums of the products of the instrumen-
tal function with the Lorentzian as the instrumental function is swept over the
Lorentzian function. This is represented mathematically by eq. 1. The effect of
convolution of a peak with an instrumental contribution is a much broader and
flatter spectrum.
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In proceeding to apply Bayesian deconvolution, the convolved data set is
read from a disk. Initial guesses for the parameters of frequency and linewidth
are determined. We choose an initial linewidth of 2.0 and the frequency para-
meters are systematically chosen by examining the frequency domain data. A
moving average of the intensities over 23 points is used to determine possi-
ble resonance frequencies. Model functions representing eq. 5 are set up using
our guesses for the parameters. These model functions are then convolved
with an instrumental function in order to represent Gj and Gi in eq. 14.

We then proceed to maximize the sufficient statistic for our model functions
by using conjugate gradient optimization of the parameters. Each time that
the parameters are iterated, the model functions are again convolved with
the instrumental function. Another peak is then added now giving us two
more parameters to optimize. The new resonance frequency is chosen 5 fre-
quency units away from the previous and the linewidth is chosen to be the
same as the previous. Again the parameters for our new model functions are
optimized using conjugate gradient optimization and a sufficient statistic
is obtained. This sufficient statistic is compared to the previous one. The ad-
dition of another Lorentzian is repeated until the new sufficient statistic is no
longer greater than the previous one. The parameters for the model functions
that yield the maximum sufficient statistic represents the deconvolved signal.

RESULTS AND DISCUSSION

We have appplied Bayesian deconvolution initialiy to a simple data set
where the peaks are well-separated. In order to provide a difficult test for the
Bayesian deconvolution method, we have also chosen to study two close
peaks with a sufficiently broad instrumental contribution so as to cause severe
overlap. The parameters for the synthetic data sets are given in Table 1
and Table 2. The instrumental linewidth was 4.0. Various peak to peak noise
levels were added to the data using a random number generator as indicated in
Table 3.

Again, the true signal is convolved with the instrumental function to repre-
sent a convolved data set that would be obtained from an instrument. Bayes-
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Parameters Used to Generate Two Well-separated Lorentzians
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Parameter Peak1 Peak2
Amplitude 100.00 50.00
Linewidth 4.00 6.00
Frequency 45.00 55.00
TABLE2
Parameters Used to Generate Two Overlapping Lorentzians
Parameter Peaki Peak2
Amplitude 100.00 50.00
Linewidth 4.00 6.00
Frequency 47.00 55.00
TABLE 3

Results of Parameters at Different Noise Levels, N, for Two Well-seperated
Peaks. The Instrumental Linewidth is 4.0, The True Values are in Table 1.

Parameter 0.0 N=1.0 N=4.0 N=8.0
Amplitude
Peak1 100.02 100.72 102.55 104.23
Error (%) 0.02 0.72 2.58 423
Peak2 50.03 49.09 46.4 43.35
Error (%) 0.06 1.82 7.2 13.3
Linewidth
Peak1 4.00 402 4.08 4.15
Ervor (%) 0.00 0.50 2.00 3.75
Peak2 6.00 6.02 6.08 6.19
Error (%) 0.00 0.33 1.33 3.17
Frequency
Peak1 45.00 45.00 44.99 44 .97
Error (%) 0.00 0.00 0.02 0.07
Peak2 55.00 54,93 54.69 54.36
Error (%) 0.00 0.13 0.56 1.16
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TABLE 4
Results of Parameters at Different Noise Levels, N, for Two Overlapping
Lorentzians. The Instrumental Linewidth is 4.0. The True Values are in

Table 2.

Parameter N=0.0 N=1.0
Amplitude Peak1 99.08 109.47
Error (%) 0.92 9.47
Peak2 50.08 52.64
0.16 0.68
Linewidth Peakt 3.99 414
Error (%) 0.25 3.50
Peak2 6.08 4.68
Error (%) 1.33 17.00
Frequency Peak1 46.99 47.06
Error (%) 0.02 0.13
Peak2 53.05 51.60
Error (%) 0.09 2.64

ian deconvolution is applied and the resulting parameters describe the decon-
volved lineshape.

Table 3 gives the results corresponding to the data set where the peaks are
well-separated at four different noise levels 0o 0.0, 1.0, 4.0 and 8.0. Table 4
gives the results for two peaks that are close to one another corresponding to
noise levels of 0.0 and 1.0. Sample spectra are shown in Figures 1 and 2.

Several limitations of the method- are apparent in the results given in these
Tables. When the signal-to-noise ratio of the data is very high, Bayesian de-
convolution does a remarkable job of extracting the true signal from the con-
volved spectrum even when the peaks are unresolved. The source of the
broadening can be due to either the overlap of the unconvolved peaks, the
linewidth of the instrumental contribution, or a combination of these two
effects. Because the linewidth information of the instrumental contribution is
contained in the data file containing the experimentally measured or generated
instrumental function the Bayesian algorithm can still regenerate a good
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FIG. 1. Two well-resolved peaks with noise=4.0 and linewidth=4.0. (A)
represents the Bayesian generated result ( _ ) overlapping the true signal (x).
(B) represents the convolved data.
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FIG. 2. Two overlapping peaks with noise=0.0 and linewidth=4.0. (A)
represents the Bayesian generated result ( _) overlapping the true signal (x).
(B) represents the convolved data.
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approximation to the unconvolved spectra as long as the convolved peaks
are reasonably resolved. The Bayesian approach can deconvolve peaks in
which one of the bands appears as a "shoulder", however, as the noise is
increased, the uncertainty in the linewidth, and the resulting estimate of the
amplitude, increases rapidly.

Brillouin Data

In Brillouin scattering a light wave has its frequency shifted by an amount
equal to the frequency of a sound wave. Since energy must be conserved, the
frequency of the incident photon is equal to the frequency of the scattered
photon plus the frequency of the sound wave. The Brillouin spectrum consists
of a central Rayleigh peak, usually centered at the incident laser frequency and
a pair of shifted peaks, called the brllouin doublet. A Lorentzian lineshape
best describes the peaks.

Bayesian deconvolution is applied to a Brillouin spectrum of formamide
(3000C). Van Cittert deconvolution is also applied to the data and the results
are compared to the Bayesian deconvolution.

The formamide data contains 512 data points. The signal is represented as
a function of frequency; therefore, in order to apply Bayesian deconvolution,
the data must be inverse Fourier transformed into the time-domain. The sig-
nal-to-noise ratio of the data set is approximately 19:1 for the two side bands
and 40:1 for the central peak. The Sﬁectrum is shown in Figure 3.

An instrumental spectrum is also vexperimentally obtained by measuring the
Brillouin spectrum of a fritted glass cell (so that the incident light is totally
reflected). Instead of actually using the experimentally obtained instrumental
spectrum, the linewidth (FWHM) of the spectrum is physically measured and
used to generate an instrumental function. The instrumental linewidth is 8.0.

The parameters that represent the deconvolved lineshape obtained from
Bayesian deconvolution are given in Table 5. The spectrum generated from
these parameters is shown graphically in Figure 4. The model function
(converted to the original coordinate system) that maximizes the sufficient
statistic including convolution is shown in Figure 3.
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FIG. 3. Brillouin spectrum of formamide.

TABLE 5
Results of Bayesian Deconvolution of the Brillouin Spectrum of Formamide

Parameter Peak1 Peak2 Peak3

Amplitude 5116.66 11962.03 4471.91
Linewidth 23.12 10.22 18.69
Frequency 131.29 242.55 353.6
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FIG. 4. Bayesian deconvolution of experimental Brillouin spectrum. (A)
represents the Bayesian deconvolved spectrum. (B) represents the original
data ( _) and the Bayesian result convolved with the instrumental function

(x).
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The Van Cittert method of deconvolution can be represented by
Dn =Dn-] +(C—Dn—-l @ T)

assuming D1=C, where Dy, is the deconvolved signal, Dy,_1 is the result of the
previous iteration, C is the observed convolved data, and T is the instrumental
function. First the observed signal is convolved with the instrumental function,
subtracted from the observed signal and then used as the estimator for the
next iteration. This process is continued until a convegence criterion is

met. Convergence can be forced by multiplying by a mixing coefficient, o,
yielding

D,=D, ,+a(C-D, ®T)

When applying the Van Cittert, three different values of the mixing coeffi-
cient, o, are chosen to examine how the choice effects the deconvolved
result. These values of a are 0.05, 0.005, and 0.0005. The deconvolved spec-
trum demonstrating the best compromise between noise and linewidth is ob-
tained at a=0.005. The resulting spectrum is also shown in Figure 4.

Since there is no way of knowing what our final result should be, we
cannot calculate any errors in the parameters obtained. But since we do have
confidence in the Bayesian deconvolution results of generated data with com-
parable signal-to-noise ratios, we can speculate that the Bayesian results are
very good. Furthermore, after observing the spectrum of the model function
that maximizes the sufficient statistic (Figure 3) and comparing it to the data,
we can draw the conclusion that our final deconvolved spectrum is a good
estimate.

Upon applying Van Cittert deconvolution to the Brillouin data, the algo-
rithm does not converge, but is terminated after 300 iterations. Furthermore
the results vary with different values of the initial mixing coefficient. These
discrepancies can probably be attributed to the noise in the data, since we
experience similar problems with the generated data sets that contain noise,
but not with the noise-free data sets. Noise has been demonstrated by Blass
and Halsey® to be one cause of Van Cittert not to converge. They determined
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the "reasonable minimum requirement for decenvolvable data (by modified
Van Cittert) to be a signal-to-noise ratio of 50:1 or greater".

CONCILUSION

Bayesian deconvolution provides a method for deconvolution of an
instrumental function from a convolved spectrum while directly yielding
deconvolved parameters such as peak height, linewidth, and area. The method
is superior to the conventional Van Cittert approach, particularly at lower
signal-to-noise ratios. The technique also handles peaks that are strongly-
overlapping.

The instrumental signal can either be measured experimentally,
or generated by estimating the linewidth. For spectroscopic methods for
which the instrumental function can be experimentally measured, i.e. Brillouin
or Raman Spectroscopy, the instrumental spectra can be stored into a data file
and used directly in the convolution step of the algorithm. For spectroscopic
methods in which this is not possible and approximate instrumental function
may be generated and stored in a file. It is not necessary that the instrumental
function be a simple Lorentzian or Gaussian lineshape.

Bayesian deconvolution is also superior to the Van Cittert in the case of
deconvolving a real Brillouin data set. The modified Van Cittert leaves doubt
as to the choice of the best value for the mixing coefficient. Furthermore, the
best deconvolved spectrum has added moise from the deconvolution process,
which will only increase the difficulty of obtaining the parameters from a
fitting routine.

We have recently applied Bayesian analysis to multi-dimensional NMR.
Several of the unique features of Bayesian analysis make it an ideal technique
for multidimensional analysis. In future work we will apply Bayesian
probability to multi-dimensional deconvolution. Bayesian deconvolution can
also be applied to other lineshapes including Gaussian or mixed
Gaussian/Lorentzian peaks. This approach will make Bayesian deconvolution
especially valuable in other areas of épectroscopy such a2 FT-IR and
Raman spectroscopy, and possibly, even in the field of chromatography.
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